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Abstract

A new method for predicting protein secondary structure from amino acid sequence has been developed. The method is based on multiple

sequence alignment of the query sequence with all other sequences with known structure from the protein data bank (PDB) by using BLAST.

The fragments of the alignments belonging to proteins from the PBD are then used for further analysis. We have studied various schemes of

assigning weights for matching segments and calculated normalized scores to predict one of the three secondary structures: a-helix, b-sheet,
or coil. We applied several artificial intelligence techniques: decision trees (DT), neural networks (NN) and support vector machines (SVM)

to improve the accuracy of predictions and found that SVM gave the best performance. Preliminary data show that combining the fragment

mining approach with GOR V (Kloczkowski et al, Proteins 49 (2002) 154–166) for regions of low sequence similarity improves the

prediction accuracy.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the ultimate goals of computational biology is

reliable prediction of the three-dimensional structure of

proteins from sequences because of significant difficulties in

obtaining high resolution crystallographic data. An inter-

mediate but useful step is to predict the secondary structure,

which might simplify the complicated 3D structure predic-

tion problem. This reduces the difficult 3D structure

determination to a simpler one-dimensional problem. This

reduction is possible since proteins can form local

conformational patterns like a-helices and b-sheets. Many

have shown that predicting secondary structure can be a first

step toward predicting 3D structure [1–4].

Sometimes, secondary structure prediction can even be

useful when a protein native structure is already known, for

example to predict amyloid fibrils: misfolded b-sheet-rich
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structures, responsible for Alzheimer’s and Parkinson’s

diseases [5].

Secondary structure prediction can be used to predict

some aspects of protein functions; in genome analysis, it is

used to help annotate sequences, classify proteins, identify

domains, and recognize functional motifs [6].

First attempts at secondary structure prediction were

based mainly on single amino acid propensities. In order to

improve prediction accuracies, some researchers began

including evolutionary information in the prediction

procedure [7,8]. These attempts consist of folding evol-

utionary propensities into the prediction by introducing a

measure of sequence variability.

Enlarged databases, new searching models and algor-

ithms make it feasible to extend family divergence, even

when the structures of some of the protein family members

are unknown (e.g. large-scale searches with PSI-BLAST [9]

or Hidden Markov Models [10,11]). By using divergent

profiles, the prediction accuracy reached 0.76 in Q3 (the

fraction of correctly predicted residues in one of the three

states: helix, strand, and other, see definition in methods). It

is believed that enlarged databases and extended searching
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Fig. 1. The secondary structure prediction scheme.
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techniques contributed significantly to the increase in the

accuracy of the secondary structure prediction.

There exist several popular and historically important

prediction methods, including empirical statistical methods

[12], information theory [13–16], nearest neighbor [17],

hidden Markov models [18], and artificial intelligence (AI)

approaches [19].

As one of the AI approaches, neural networks simulate

the operations of synaptic connections among neurons.

As the neurons are layered to process different levels of

signals, the neural networks accept the original input (which

might be a sequence segment, having been modified by a

weighting factor), combine more information, integrate all

to an output, send the output to the next level of processor,

and so on. During this process, the network adjusts the

weights and biases continuously, according to the known

information, i.e. the network is trained on a set of

homologous sequences of known structures for the second-

ary structure prediction problem. The more layers it has, the

more information it distinguishes. The PHD [19] is one

representative method, with the most recent versions

reporting accuracy of prediction up to 0.77.

In the field of ab initio protein structure prediction, the

Rosetta algorithm, a computational technique developed by

Baker and his colleagues at the University of Washington,

was quite successful in predicting the three-dimensional

structure of a folded protein from its linear sequence of

amino acids during the fourth (2000) and the fifth (2002)

Critical Assessment of Techniques for Protein Structure

Prediction (CASP4, CASP5), and most recently during

CASP6 (2004).

Based upon the assumption that the distribution of

structures sampled by an isolated chain segment can be

approximated by the distribution of conformations of that

sequence segment in known structures, Rosetta predicts

local structures by searching all possible conformations.

The popular view is that folding to the native structure

occurs when conformations and relative orientations of the
segments allow burial of the hydrophobic residues and

pairing of b-strands without steric clashes [20].

It is commonly believed that similarities between the

sequences of two proteins infer similarities between their

structures, especially when the sequence identity is greater

than about 25%. Most protein sequence folds into a unique

three-dimensional structure, yet sometimes highly dissim-

ilar sequences can assume similar structures. From an

evolutionary point of view, the structure can be more

conserved than sequence.

The sequence similarity of very distant homologues is

difficult to identify. But the conservation of some special

motifs can possibly be captured using special methods.

Those special motifs are more important than general

matches found in alignments of close homologues due to

their uniqueness. The problem of such detection is usually

confounded by the use of structure-independent sequence

substitution matrices.

Since a similar sequence implies a similar structure and

conserved local motifs may assume a similar shape, we

attempt to find a local alignment method to obtain structure

information to predict the secondary structure of query

sequences. For this study, we assembled a set of segments

obtained through local sequence alignment and use this

information for predictions. We applied BLAST on query

sequences against a structure database in which all the

information of proteins is available (PDB or DSSP), and

then use these results to introduce evolutionary information

into predictions. We applied various weighting procedures

to the matches based on the sequence similarity scores.

Finally, we calculated the normalized scores for each

position and for each secondary structure at that position.

Note that since the scores of being E, H or C are sometimes

close or even equal, so that choosing the highest score is

either not possible or not fully justifiable. Furthermore, the

predicted secondary structure element is not physically

meaningful in all cases, such as helices having only two

residues, or mixtures of strand (E) and helix (H) residues.

Therefore, instead of predicting the secondary structure with

the highest score, we incorporated artificial intelligence (AI)

approaches for the final secondary structure assignment.
2. Methods

In the prediction and evaluation part, for each query

sequence from the dataset, we assign weights to the

matching segments obtained from BLAST, calculate

normalized scores for each residue, predict the secondary

structure for that residue according to the normalized scores,

and finally, calculate Q3 (an accuracy measure [16]) and

Matthews’ correlation coefficients [21]. In the weight

assignment part, several parameters are considered, includ-

ing different substitution matrices, similarity/identity cut-

offs, degree of exposure of residues to solvent, and protein

classification and sizes. Two strategies are applied to predict



Fig. 2. An example showing a query sequence and its matching segments

(sequences not shown). The query sequence residues are represented with

their sequence position numbers. The matching segments are expressed as

secondary structure elements. The weights are shown for each segment.
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the secondary structure according to the normalized scores

of residues. One method is to choose the highest-score

structure class as the prediction, and the other is to use AI

(artificial intelligence) approaches to choose a classification

based on training.

Fig. 1 shows the flowchart of our approach.

The 513 non-redundant domains collected by Cuff and

Barton [22,23] have been selected as the query test

sequences (CB513). Local sequence alignment using

BLAST has been applied with blastcl3 on CB513 sequences

using different parameters. We use different substitution

matrices, including BLOSUM-45, -62, and -80, PAM-30

and -70.
2.1. Secondary structure elements interpretation

We follow a three-state identification of secondary

structures, namely, helix (H), extended (b-sheet) (E), and
coil (C). Because it provides a consistent set of secondary

structure assignments, we have utilized a reduced version of

DSSP [24] (Database of Secondary Structure in Proteins)

classification that uses eight types of secondary structure

assignment: H (a-helix), E (extended b-strand), G (310
helix), I (p-helix), B (bridge, a single residue b-strand), T
(b-turn), S (bend), and C (coil). For our translation, we

follow the strategy of CASP [25] (Critical Assessment of

Techniques for Protein Structure Prediction), and reduce the

DSSP alphabet in the following manner: helices (H, G, and

I) in the DSSP code are assigned the letter H in the three-

letter secondary structure code; whereas strands (E) and

bridges (B) in the DSSP code are translated into sheets (E).

Other elements of the DSSP structure (T, S, C) are translated

into coil (C).
2.2. Weight assignment for matches of segments

We define identity scores and their powers (idc, where c

is a positive real number) as the weights of matching

segments. Here id is a fraction, representing the ratio of the

number of exact matches of residues to the total number of

residues in the matching segment. Weights are adjusted
when different parameters are considered. This procedure

will be illustrated in the parameter section.
2.3. Calculation of normalized scores for each residue

The prediction is position-based (residue by residue for

the query sequences). At each position, the predicted

secondary structure is determined by the actual secondary

structures of segments matching at that position. Each

match is assigned a weight according to the similarity or

identity score of the alignment from BLAST. At each

position, the weights are normalized, and the normalized

scores for the position being in each of secondary structure

states are calculated. Our procedure of normalized score

calculation is illustrated in the following example (Fig. 2).

Define s(H, i) as the normalized score for position i to be

in the state H.

sðH; iÞZ

P
wðH; iÞP

wðH; iÞC
P

wðE; iÞC
P

wðC; iÞ
(1)

where w(H, i) is the weight for one matching segment with

residue at the ith position in a helix. w(E, i) and w(C, i) are

similarly defined.

For the example above, if we show few cases:

sðH; 2ÞZ 0:2=ð0:1C0:2C0:4Þ

sðH; 4ÞZ 0:1=ð0:1C0:2C0:3C0:4Þ (2)

sðE; 4ÞZ ð0:2C0:4Þ=ð0:1C0:2C0:3C0:4Þ
2.4. Parameters adjusted for weight assignments

We have used two different types of substitution

matrices: PAM and BLOSUM. PAM (Percent Accepted

Mutation) matrix was introduced by Dayhoff [26] to

quantify the amount of evolutionary change in a protein

sequence, i.e. how often different amino acids replace other

amino acids in evolution based on a database of 1572

changes in 71 groups of closely related proteins. BLOSUM

(Blocks Substitution Matrix) was introduced by Henikoff

[27] to obtain a better measure of differences between two

proteins, specifically for distantly related proteins. It is a

substitution matrix in which scores for each position are

derived from observations of the frequencies of substi-

tutions in blocks of local alignments in related proteins. The

blocks were constructed by PROTOMAT from 504 non-

redundant groups of proteins catalogued in Prosite 8.0 [28]

keyed to Swiss-Prot. We also have used BLOSUM-45, -62, -

80 and PAM-30, -70 in BLAST alignments in our

calculations.

Because we are testing the concept of fragment assembly

for secondary structure prediction, we choose to limit the

extent of similarity or identity to be included. Different cut-

offs of similarity or identity scores of matches are set. Cut-

offs include 99, 90, 80, 70, and 60%. The matches with



Fig. 3. Basic CB513 prediction accuracy, with bars from left to right designating BLOSUM45, BLOSUM62, BLOSUM80, PAM30, and PAM70 substitution

matrices.
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similarity or identity scores higher than a cut-off are

eliminated from matching lists of segments, which are used

to calculate normalized scores of residues.

In order to include approximate tertiary information in

the secondary structure calculations, we calculated the

degree of exposure to solvent for residues in the 13,432

sequences in PDB (out of 21,754 sequences available by

7/21/2003). Naccess software (http://wolf.bms.umist.ac.uk/

naccess/) has been used to calculate the solvent accessibility

of residues for each protein in this data set. A residue

indexed file is thus constructed that includes the solvent

accessibility status of each residue. This residue file is used

to differentiate buried and exposed residues by assigning

different weights. If the relative accessibility of a residue is

less than 5.0, it is regarded as a buried residue; if the relative

accessibility of a residue is greater than 40.0, it is regarded

as an exposed residue; the rest are regarded as intermediate

residues. Buried residues are weighted more heavily.

2.4. Prediction based on normalized scores of residues

The secondary structure element having the highest score

is chosen as the final predicted result for a given residue. For

a specific position of a query sequence, we have three

normalized scores for the residue for each secondary

structure state (s(H, i), s(E, i), and s(C, i)). In this prediction

scheme, we always choose the highest score among these

three scores to determine the prediction for that residue.

We also apply AI techniques to modify the final

secondary structure in the decision step. Instead of assigning

the secondary structure for a specific position according to

the highest normalized score of the secondary structure at

that position, we applied artificial intelligence approaches to

choose the most appropriate normalized score according to

learning results from training sets. We used decision trees

(DT), neural networks (NN), and support vector machines

(SVM) and compared their predictions. The main idea of

these AI approaches is to gather information from a training
set and use it to predict for a new test set. In our case, the

ratio of the number of training and test sequences is 4:1. We

first formed a file that contains all the normalized scores for

all the query sequences from the benchmark dataset, then

randomly partitioned these scores into training and test sets,

and finally applied AI approaches for the prediction.
2.5. Measures for prediction evaluation

The most common parameter used to measure prediction

accuracy is Q3, which is the fraction of all correctly

predicted residues within the three state (H, E, C) classes.

An accuracy matrix [Aij] of size 3!3 (i and j stand for the

three states H, E, C) is introduced. The ij-th element Aij of

the accuracy matrix is the number of residues predicted to

be in state j, which, according to the PDB data, is actually in

state i. Obviously, the diagonal entries of [Aij] represent the

number of correctly predicted residues. Q3 is therefore,

defined as:

Q3 Z

P3
iZ1 Aii

N
(3)

where N is the total number of residues in the query

sequence, and defined as the total number of all entries of

[Aij]:

N Z
X3

iZ1

X3

jZ1

Aij (4)

Another measure of accuracy of prediction that we

calculate is Matthews correlation coefficient for helix (Ca),

strand (Cb) and coil (Cc) states.

Matthews correlation coefficient for the helix state (Ca)

is defined as:

Ca Z
TPaTNa KFNaFPaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð½TNa CFNa�½TNa CFPa�½TPa CFNa�½TPa CFPa�Þ
p

(5)

http://wolf.bms.umist.ac.uk/naccess/
http://wolf.bms.umist.ac.uk/naccess/


Fig. 4. Prediction accuracies under different identity cut-offs for weights of id3 and BLOSUM 45 substitution matrix.

Table 2

Prediction accuracies (Q3) with accessibility of residues considered. wt

stands for weight, SA for solvent accessibility
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where TP, TN, FN, and FP are the numbers of true positives,

true negatives, false negatives, and false positives,

respectively.
Residue status definition Q3

Control (status not applied) 0.825

wtZ2 if SA%5 0.828

wtZ2 if SA%20 0.829
3. Results and discussion

3.1. Basic method—the weights of matches are defined to be

the powers of identity scores of matches

We tried different combinations of matrices and identity

powers. The best result comes from using BLOSUM 45 and

id3 as the weight assignment method. Fig. 3 shows the basic

average prediction accuracies (Q3) using the different

substitution matrices.

3.2. Different identity score cut-offs

3.2.1. All ‘good’ matches are filtered out

In the following calculations, we use the basic prediction

method, and observe the influence of matches at various

identity levels by using several identity cut-offs. If the

identity score of a match is greater than the cut-off, the

match is eliminated from consideration. In this part, we

focus mainly on predictions using BLOSUM 45, since it

gives better results at different identity cut-off levels. Note

that when we use BLOSUM 45 at cut-off levels 0.99 and

0.90, the Q3 values become 0.825 and 0.735, respectively.

Fig. 4 summarizes the tendency of changes with the

drops of cut-offs.
Table 1

Prediction accuracies under identity cut-off 90 in three cases

Matrix id Cut-off High id matches

processing

id1/3 id

BLOSUM45 0.90 Case 1 (all fil-

tered)

0.675 0

Case 2 0.677 0

Case 3 0.678 0
3.2.2. Perfect matches filtered out, but most strong

reasonable matches kept

Matches with the highest identity scores (greater than id

cut-off) are filtered out, but the ‘reasonable’ high-idmatches

are kept. We define the ‘reasonable’ high-id matches to be

those matches that have relatively high identity scores

(greater than id cut-off), but are not too short (O5 residues),

and are not as long as the query sequence (less than 90 or

95% the length of the query sequence).

The prediction accuracy Q3’s are compared in the

following three cases. All results are obtained using

BLOSUM45 with id cut-off set to 0.90.

In case 1, all high-id matches (matches with identity

scores higher than identity cut-off) are filtered out. This case

is used as a control. In case 2, sequences with identity scores

greater than id cut-off (0.90 here), lengths longer than five

residues, and lengths less than 90% of query sequence are

kept. In case 3, sequences with identity scores greater than

90%, lengths longer than five residues, and lengths below

95% of the query sequence are kept. Table 1 gives the

accuracies for the above three cases. We observe that id3

gives the highest accuracy in each case.
1/2 id id2 id3

.680 0.697 0.725 0.735

.683 0.701 0.730 0.740

.683 0.702 0.731 0.742



Table 3

The accuracies of predictions for proteins of different lengths

Groups CB513 Tiny Small Large Giant

Q3 0.931 0.911 0.936 0.948 0.940

Table 4

Correlation coefficients for a-helix, b-strand and coil

Id cut-off Ca Cb Cc

0.99 Sequence average 0.682 0.614 0.688

AA average 0.810 0.780 0.739

0.90 Sequence average 0.549 0.472 0.552

AA average 0.625 0.589 0.553
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3.2.3. Effect of exposure of residues to solvent

Here, we show the results when the weights of matches

are defined as id3, id cut-off is set to be 0.99, and the

BLOSUM 45 matrix is applied. Accordingly, we make the

following linear changes to the weights of residues: if a

residue is buried, its weight is multiplied by an integer (2); if

it is intermediate, we multiply the original weight by 1.5; if

exposed, the weight is one. Table 2 gives the Q3 results. As

can be seen, the differentiation of buried and exposed

residues does not have a substantial effect on Q3.

3.2.4. Accuracies for proteins of different sizes

For these calculations, the dataset is divided into four

groups according to sequence sizes: tiny (n%100 residues,

154 sequences), small (100!n%200 residues, 216

sequences), large (200!n%300 residues, 84 sequences),

and giant (nO300 residues, 58 sequences). We only

considered the case of the BLOSUM 45 matrix, with

weight function id3. No optimization was applied. Table 3

shows the prediction accuracies for proteins of different

sizes. The accuracies vary from 0.911 for the ‘tiny’ group to

0.948 for the ‘large’ group. Relatively little change is

observed across those different categories.

3.2.5. Application of artificial intelligence (AI) approaches

We use AI approaches to determine the final secondary

structure prediction based on the normalized scores of some
Fig. 5. Normalized score based prediction using A
secondary structure elements. The prediction accuracies are

measured using Q3. We consider some popular AI

approaches, including decision trees (DT), neural networks

(NN), and support vector machines (SVM).

In these calculations, the substitution matrix BLOSUM

45 is used. All matches which are better than 90% are

discarded. We randomly partitioned the query dataset into

training and testing sets at a ratio of 4:1. Previously, when

manually assigning a secondary structure state to a residue

according to the highest normalized score of that residue, we

obtain the best result of prediction accuracy of Q3Z0.720

for the test set sequences. Fig. 5 shows a comparison among

AI approaches for different window sizes (note that our

prediction accuracy using the previous method for the test

set is exactly the same 0.720). Little improvement is

observed in prediction accuracy among decision trees,

neural networks and support vector machines.
3.2.6. Correlation coefficient (CC) of prediction

We calculate average Matthews correlation coefficient

for the helix state (Ca), strand (Cb) and coil (Cc) for our

prediction, when BLOSUM 45 is applied, identity cut-off

0.99 is set, and the weight is defined as identity score cubed.

Table 4 gives the result of correlation coefficient for (Ca),

strand (Cb) and coil (Cc) for the 513 sequences. The results

shown are either averaged over the number of sequences
I approaches with different window sizes.



Fig. 6. Q3 as a function of sequence similarity cut-off for fragment datamining method, GOR V and the combination of these two methods. The fraction of

target sequence residues predicted by GOR in the combined method (coverage) is also shown.
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(sequence average) or over the number of amino acids (AA

average).

3.2.7. The parameters corresponding to the case of the

highest prediction accuracy

When the weights are defined as the identity score

powers, the best accuracy is 0.931. It is obvious that 0.931 is

over-estimated, since in a real application, a new query

sequence would not likely have a perfect match in alignment

against any database. So we filter out some good matches

with identity scores higher than a cut-off. The best

prediction accuracy for cut-off 0.99 is 0.825, and for 0.90

is 0.735. If some optimization methods (either separate or

combined) are applied, we can expect minor improvements

in the accuracies. Actually we have seen such a tendency

from these optimization methods. We notice that perfect

matches play an important role in the accuracy of the

prediction. Even a 0.01 cut-off decrease leads to a sharp

drop in the prediction accuracy.

Overall, using AI approaches to determine the final

prediction according to previously obtained normalized

scores yields slightly better results.

3.2.8. Combination of the present approach with GOR V

The GOR [13] (Garnier–Osguthorpe–Robson) method is

one of the earliest methods to predict the secondary

structure of proteins based on the amino acid frequencies

combined with information theory and Bayesian statistics.

In the first version of GOR, a data set of 26 proteins was

used to derive singlet statistics. Throughout the years, the

method has been enhanced continuously: (1) the size of the

database was enlarged to 75 proteins in GOR II [14], (2)

doublets, additionally to singlets, were used to derive more

meaningful statistics in GOR III [29], (3) the protein data set

was increased to 267 proteins in GOR IV [15], and finally
(4) evolutionary information was added in GOR V [16]

based on a database 513 non-redundant proteins. The GOR

V server is publicly available at http://gor.bb.iastate.edu/.

With these improvements, the accuracy of the GOR method

(Q3) using full jackknife testing reached 73.5% in its final

version.

Since GOR predictions do not use any sequence

similarity information, they have a higher chance to perform

well for low sequence similarities compared to other

prediction methods based on database searches. This

advantage provided by GOR is harnessed to increase the

accuracy of the fragment mining method in the following

manner. First, the fragments are identified according to their

sequence similarity to the target sequence. Then, the

fragments above a minimum similarity cut-off are selected

to predict the protein secondary structure using the fragment

mining. Since high sequence similarity suggests similar 3D

protein structures, the minimum similarity cut-off is taken as

40%. Above this sequence similarity, the fragment mining

method is expected to perform well due to strong sequence-

structure correlation.

Since a minimum cut-off is enforced, the fragment

mining cannot assign a secondary structure to every residue.

Therefore, the rest of the assignments are predicted using

GOR V method.

Although biological databases are frequently expanded,

the sequence alignments obtained using similarity searches

may not always contain a perfect match, but instead have a

set of matches with varying sequence similarities. In order

to test the accuracy of our combined method at different

levels of sequence similarities, we defined a maximum

sequence similarity cut-off value above which matches are

not included in the fragment mining. Therefore, in our

combined method, only fragments with sequence simi-

larities between maximum and minimum similarity cut-off

http://gor.bb.iastate.edu/
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values are used for mining predictions; for the rest of the

target sequence, the GOR V method is used.

Fig. 6 shows the prediction accuracies for the fragment

mining method and the combined method, averaged over

513 proteins. Coverage shows the fraction of target

sequence residues predicted by GOR. The minimum

sequence similarity is kept constant at 40%. As expected,

the fragment mining method performs exceptionally well at

high sequence similarities. When the maximum cut-off is

reduced to 90%, the fragment mining performs with 74.2%

accuracy, which is slightly larger than the average GOR V

accuracy of 73.5% for the same protein data set. When

combined with GOR V method, the overall accuracy

increases by an additional 1.2%. The increase in the overall

accuracy is consistently observed for each maximum

similarity cut-off value employed in this study. Above

50% maximum cut-off, the fragment mining method scores

more than 65% accuracy, and the combined method, more

than 67.7%. These results show that combining the fragment

mining with GOR can be exploited to increase the

secondary structure prediction accuracy for low sequence

similarities.
4. Conclusion

The present study shows prediction accuracy comparable

to currently popular methods. We find that our method

works almost equally well for sequences of different sizes in

CB513. Additionally, our method yields comparable

prediction accuracies for different folds and secondary

structures (all-a, all-b, aCb and a/b) of proteins in the

query dataset. The accuracy for all beta sequences is only

1.5% less than for all-a sequences. We use some AI

approaches in the last step of our prediction, to determine

the final secondary structure element according to the

normalized score file, and gain 3–4% improvement in

accuracy based on the method of choosing the highest

normalized score.

Finally, the accuracy of the prediction can be further

improved by combining it with the GOR Vmethod for cases

when sequence similarity with fragments from the database

is below a certain threshold.
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